skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Satici, Aykut C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning policies for contact-rich manipulation is a challenging problem due to the presence of multiple contact modes with different dynamics, which complicates state and action exploration. Contact-rich motion planning uses simplified dynamics to reduce the search space dimension, but the found plans are then difficult to execute under the true object-manipulator dynamics. This paper presents an algorithm for learning controllers based on guided policy search, where motion plans based on simplified dynamics define rewards and sampling distributions for policy gradient-based learning. We demonstrate that our guided policy search method improves the ability to learn manipulation controllers, through a task involving pushing a box over a step. 
    more » « less
  2. In this work, we discuss the modeling, control, and implementation of a rimless wheel with a torso. We derive and compare two control methodologies: a discrete-time controller (DT) that updates the controls once-per-step and a continuous-time controller (CT) that updates gains continuously. For the discrete controller, we use least-squares estimation method to approximate the Poincare ́ map on a certain section and use discrete- linear-quadratic-regulator (DQLR) to stabilize a (closed-form) linearization of this map. For the continuous controller, we introduce moving Poincare ́ sections and stabilize the transverse dynamics along these moving sections. For both controllers, we estimate the region of attraction of the closed-loop system using sum-of-squares methods. Analysis of the impact map yields a refinement of the controller that stabilizes a steady-state walking gait with minimal energy loss. We present both simulation and experimental results that support the validity of the proposed approaches. We find that the CT controller has a larger region of attraction and smoother stabilization as compared with the DT controller. 
    more » « less